

СОДЕРЖАНИЕ

ЗАГОТОВКИ HYPERION ДЛЯ ПРОИЗВОДСТВА ОСЕВОГО ИНСТРУМЕНТА _	04
ЗАГОТОВКИ ЦЕЛЬНЫЕ ТВЕРДОСПЛАВНЫЕ	06
ЗАГОТОВКИ ДЛЯ КОНЦЕВЫХ ФРЕЗ С ФАСКОЙ, ШЛИФОВАННЫЕ С НОВЫМ ДОПУСКОМ HYPERION, ДЛИНЫ ФИКСИРОВАННЫЕ (в дюймах)	
ЗАГОТОВКИ ДЛЯ КОНЦЕВЫХ ФРЕЗ С ФАСКОЙ, ШЛИФОВАННЫЕ, ДОПУСК ISO h6, ДЛИНЫ ПО СТАНДАРТУ DIN 6527 И 6528	
ЗАГОТОВКИ ДЛЯ КОНЦЕВЫХ ФРЕЗ, ШЛИФОВАННЫЕ, ДОПУСК ISO h6, ДЛИНОЙ 100 мм	
ЗАГОТОВКИ ДЛЯ ФРЕЗ СО СФЕРИЧЕСКИМ КОНЦОМ С ФАСКОЙ, ШЛИФОВАННЫЕ, ДОПУСК ISO h6, ДЛИНЫ ФИКСИРОВАННЫЕ (в дюймах)	
ЗАГОТОВКИ ДЛЯ ФРЕЗ СО СФЕРИЧЕСКИМ КОНЦОМ С ФАСКОЙ, ШЛИФОВАННЫЕ, ДОПУСК ISO h6, ДЛИНЫ ФИКСИРОВАННЫЕ	
ЗАГОТОВКИ ДЛЯ ФРЕЗ СО СФЕРИЧЕСКИМ КОНЦОМ С ФАСКОЙ, ШЛИФОВАННЫЕ, ДОПУСК ISO h6, ДЛИНОЙ 100 мм	
ЗАГОТОВКИ ДЛЯ КОНЦЕВЫХ ФРЕЗ, НЕШЛИФОВАННЫЕ, ДЛИНЫ ПО СТАНДАРТУ DIN 6527 И 6528	
ЗАГОТОВКИ ДЛЯ СВЕРЛ, НЕШЛИФОВАННЫЕ, ДЛИНЫ ПО СТАНДАРТУ DIN 6539	
СТЕРЖНИ ДЛИНОЙ 320 мм, ШЛИФОВАННЫЕ, ДОПУСК ISO h6	
СТЕРЖНИ ДЛИНОЙ 320 мм, НЕШЛИФОВАННЫЕ	
ЗАГОТОВКИ С КАНАЛАМИ ДЛЯ ПОДВОДА СОЖ	18
ЗАГОТОВКИ С ФАСКОЙ И ОДНИМ ПРЯМЫМ КАНАЛОМ ДЛЯ ПОДВОДА СОЖ, ШЛИФОВАННЫЕ, ДОПУСК ISO H6, ДЛИНЫ ФИКСИРОВАННЫЕ	
ЗАГОТОВКИ С ФАСКОЙ И ОДНИМ ПРЯМЫМ КАНАЛОМ ДЛЯ ПОДВОДА СОЖ, ШЛИФОВАННЫЕ, ДОПУСК ISO H6, ДЛИНЫ ФИКСИРОВАННЫЕ (ДЮЙМОВЫЕ)	
КЛАССИФИКАЦИЯ МАТЕРИАЛОВ ПО ISO	20
ХАРАКТЕРИСТИКИ ИЗНОСА ТВЕРДОСПЛАВНЫХ ИНСТРУМЕНТОВ _	24
СПЛАВЫ	27

ЗАГОТОВКИ HYPERION ДЛЯ ПРОИЗВОДСТВА ОСЕВОГО ИНСТРУМЕНТА УЛУЧШЕННЫЕ ОТРАСЛЕВЫЕ СТАНДАРТЫ БЛАГОДАРЯ ПЕРЕДОВОЙ ТЕХНОЛОГИИ

Заготовки Нурегіоп для производства осевого инструмента представляют на рынке металлообработки комбинацию высококачественных сплавов и точных геометрических размеров, которые обеспечивают нашим заказчикам все характеристики и преимущества, необходимые для сложной механической обработки.

НАДЕЖНОСТЬ И СТАБИЛЬНОСТЬ

Нурегіоп отличается от других компаний тем, что мы полностью контролируем и отслеживаем весь процесс производства продукции, начиная с добычи сырья и заканчивая изготовлением готовых заготовок для осевого инструмента. В ходе этого полностью интегрированного процесса мы осуществляем строгий и надежный статистический контроль производственных процессов (SPC), нацеленный на достижение индекса воспроизводимости процесса (Cpk) ≥ 1,3. Индекс Cpk можно определить как способность процесса обеспечивать производство продукции в рамках заданных спецификацией допусков. Например, Cpk, равный 0,67, — это статистическая вероятность того, что партия содержит 30,9 % изделий, не соответствующих спецификации. Целевым показателем Нурегіоп является Cpk, равный 1,3, который указывает, что вероятность производства изделий вне допуска 0,62 %.

СИГМА	Cpk	ГОДНЫЕ ИЗДЕЛИЯ (%)	БРАК (%)
2	0,67	69,10	30,90
3	1	93,32	6,68
4	1,33	99,38	0,62
5	1,67	99,98	0,02
6	2	99,999	0,00034

Эти показатели напрямую влияют на характеристики готовых изделий наших заказчиков. Применение заготовок Hyperion для производства осевых инструментов означает неизменную стабильность, производительность и надежность.

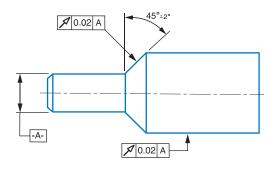
ПРЕИМУЩЕСТВА КОМПАНИИ HYPERION КАК ПОСТАВЩИКА ЗАГОТОВОК ДЛЯ ПРОИЗВОДСТВА ОСЕВЫХ ИНСТРУМЕНТОВ

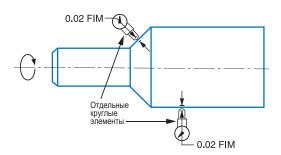
- Постоянство характеристик изделий в каждой партии
- Длительный срок службы инструментов
- Самые жесткие допуски на рынке
- Надежные высококачественные основы
- Прогнозируемый срок службы инструментов
- Гарантия стабильности и постоянства процессов обработки детали
- -- Cpk > 1,3
- Среднеквадратическое отклонение от 3 до 6
- Минимальное стандартное отклонение
- Надежный процесс SPC.

ЗАГОТОВКИ HYPERION ДЛЯ ПРОИЗВОДСТВА ОСЕВОГО ИНСТРУМЕНТА УЛУЧШЕННЫЕ ОТРАСЛЕВЫЕ СТАНДАРТЫ БЛАГОДАРЯ ПЕРЕДОВОЙ ТЕХНОЛОГИИ

Компания Hyperion гордится тем, что задает отраслевой стандарт для геометрических допусков. Точность, которую мы обеспечиваем, напрямую влияет на биение — ключевую характеристику готового инструмента.

БИЕНИЕ

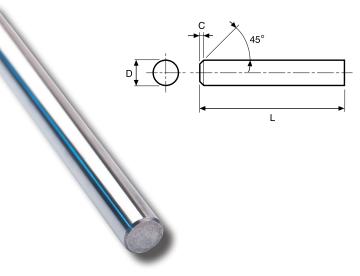

Биение — это сумма погрешностей в размерных допусках при изготовлении заготовки для осевого инструмента. Стандарт AMSE/ANSI Y14.5M-1982 описывает данный критический допуск следующим образом:


«В любой точке измерения каждый круговой элемент этих поверхностей должен находиться в пределах заданного допуска биения (0,02 от полного перемещения индикатора) при вращении детали на 360° относительно оси с индикатором, закрепленным в положении, перпендикулярном истинной геометрической форме (при этом обеспечивается только контроль круговых элементов поверхностей, но не поверхностей в целом)».

Hyperion соблюдает лучшие в отрасли допуски биения заготовок для осевых инструментов в каждой партии изделий, как показано в следующей таблице.

ДЛИНА ЗАГОТОВКИ ДЛЯ ОСЕВОГО ИНСТРУМЕНТА (дюймы)	МАКСИМАЛЬНОЕ БИЕНИЕ (ДЮЙМЫ)
От 1,5 до 2,5 (38,1 мм)	0,0002 (0,00508 мм)
От 2,5 (63,5 мм) до 3,5 (88,9 мм)	0,0003 (0,00762 мм)
От 3,5 (88,9 мм) до 11,5 (292,1 мм)	0,0004 (0,01016 мм)

ОПРЕДЕЛЕНИЕ РАДИАЛЬНОГО БИЕНИЯ



FIM = полное перемещение индикатора

ЗАГОТОВКИ ДЛЯ КОНЦЕВЫХ ФРЕЗ С ФАСКОЙ, ШЛИФОВАННЫЕ С НОВЫМ ДОПУСКОМ HYPERION, ДЛИНЫ ФИКСИРОВАННЫЕ (в дюймах)

ДИАМЕТР (дюймы):

ot 1/8 (3,175 mm) go < 3/4 (19,05 mm) ot ≥ 3/4 (19,05 mm) go < 1-1/8 (28,575 mm)

от \ge 1-1/8 (28,575 мм) до 2 (50,8 мм)

ДЛИНА (дюймы):

 \leq 2,005 (50,927 MM) ot \geq 2,255 (57,277 MM) do \leq 2,755 (69,977 MM) \geq 3,005 (76,327 MM)

ДОПУСК (дюймы):

от -0,00010 (0,00254 мм) до -0,00030 (0,00762 мм) от -0,00010 (0,00254 мм)

до -0,00035 (0,00889 мм)

от -0,00010 (0,00254 мм) до -0,00040 (0,01016 мм)

ДОПУСК (дюймы):

-0 / +0,031 (0,7874 mm) -0 / +0,050 (1,27 mm) -0 / +0,060 (1,524 mm)

ЧИСТОТА ОБРАБОТКИ ПОВЕРХНОСТИ:

< 0,4375 дюйма (11,1125 мм) 0,05 Ra ≥ 0,4375 дюйма (11,1125 мм) 0,10 Ra

ДОПУСК БИЕНИЯ

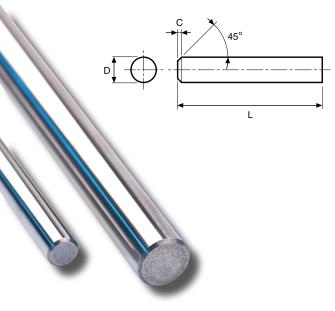
Длина заготовки (дюймы)	Максимальное биение (дюймы)
От 1,5 (38,1 мм) до 2,5 (63,5 мм)	0,0002 (0,00508 мм)
От 2,5 (63,5 мм) до 3,5 (88,9 мм)	0,0003 (0,00762 мм)
От 3,5 (88,9 мм) до 11,5 (292,1 мм)	0,0004 (0,01016 мм)

Стандартный материал — сплав H10F. Другие сплавы предоставляются по запросу.

ПРИМЕР ЗАКАЗА ПРОДУКЦИИ

Для заказа заготовки 1/2 дюйма (12,7 мм) (D) \times 5 дюймов (127 мм) (L) из сплава H10F

RU GI 0500 05005 6UH10F


Для заказа заготовки 1/2 дюйма (12,7 мм) (D) \times 5 дюймов (127 мм) (L) из сплава H12F

RU GI 0500 05005 6UH12F

	РАЗМЕРЫ		КОД HYPERION
D (дюймы)	L (дюймы)	Размер фаски (дюймы)	
0,1250 (3,175 мм)	1,505 (38,227 мм)	0,011 (0,2794 мм)	RU GI 012501505 6S
0,1250 (3,175 мм)	2,005 (50,927 мм)	0,011 (0,2794 мм)	RU GI 012502005 6S
0,1250 (3,175 мм)	3,005 (76,327 мм)	0,011 (0,2794 мм)	RU GI 012503005 6U
0,1875 (4,7625 мм)	1,505 (38,227 мм)	0,011 (0,2794 мм)	RU GI 018751505 6S
0,1875 (4,7625 мм)	2,005 (50,927 мм)	0,011 (0,2794 мм)	RU GI 018752005 6S
0,1875 (4,7625 мм)	2,505 (63,627 мм)	0,011 (0,2794 мм)	RU GI 018752505 6T
0,1875 (4,7625 мм)	3,005 (76,327 мм)	0,011 (0,2794 мм)	RU GI 018753005 6U
0,1875 (4,7625 мм)	4,005 (101,727 мм)	0,011 (0,2794 мм)	RU GI 018754005 6U
0,2500 (6,35 мм)	2,005 (50,927 мм)	0,011 (0,2794 мм)	RU GI 025002005 6S
0,2500 (6,35 мм)	2,505 (63,627 мм)	0,011 (0,2794 мм)	RU GI 025002505 6T
0,2500 (6,35 мм)	3,005 (76,327 мм)	0,011 (0,2794 мм)	RU GI 025003005 6U
0,2500 (6,35 мм)	4,005 (101,727 мм)	0,011 (0,2794 мм)	RU GI 025004005 6U
0,3125 (7,9375 мм)	2,005 (50,927 мм)	0,011 (0,2794 мм)	RU GI 031252005 6S
0,3125 (7,9375 мм)	2,505 (63,627 мм)	0,011 (0,2794 мм)	RU GI 031252505 6T
0,3125 (7,9375 мм)	3,005 (76,327 мм)	0,011 (0,2794 мм)	RU GI 031253005 6U
0,3125 (7,9375 мм)	3,505 (89,027 мм)	0,011 (0,2794 мм)	RU GI 031253505 6U
0,3125 (7,9375 мм)	4,005 (101,727 мм)	0,011 (0,2794 мм)	RU GI 031254005 6U
0,3750 (9,525 мм)	2,005 (50,927 мм)	0,011 (0,2794 мм)	RU GI 037502005 6S
0,3750 (9,525 мм)	2,505 (63,627 мм)	0,011 (0,2794 мм)	RU GI 037502505 6T
0,3750 (9,525 мм)	3,005 (76,327 мм)	0,011 (0,2794 мм)	RU GI 037503005 6U
0,3750 (9,525 мм)	3,505 (89,027 мм)	0,011 (0,2794 мм)	RU GI 037503505 6U
0,3750 (9,525 мм)	4,005 (101,727 мм)	0,011 (0,2794 мм)	RU GI 037504005 6U
0,4375 (11,1125 мм)	2,505 (63,627 мм)	0,023 (0,5842 мм)	RU GI 043752505 6T
0,4375 (11,1125 мм)	2,755 (69,977 мм)	0,023 (0,5842 мм)	RU GI 043752755 6U
0,4375 (11,1125 мм)	3,005 (76,327 мм)	0,023 (0,5842 мм)	RU GI 043753005 6U
0,4375 (11,1125 мм)	4,005 (101,727 мм)	0,023 (0,5842 мм)	RU GI 043754005 6U
0,4375 (11,1125 мм)	4,505 (114,427 мм)	0,023 (0,5842 мм)	RU GI 043754505 6U
0,5000 (12,7 мм)	2,505 (63,627 мм)	0,023 (0,5842 мм)	RU GI 050002505 6T
0,5000 (12,7 мм)	3,005 (76,327 мм)	0,023 (0,5842 мм)	RU GI 050003005 6U
0,5000 (12,7 мм)	3,505 (89,027 мм)	0,023 (0,5842 мм)	RU GI 050003505 6U
0,5000 (12,7 мм)	4,005 (101,727 мм)	0,023 (0,5842 мм)	RU GI 050004005 6U
0,5000 (12,7 мм)	4,505 (114,427 мм)	0,023 (0,5842 мм)	RU GI 050004505 6U
0,5000 (12,7 мм)	5,005 (127,127 мм)	0,023 (0,5842 мм)	RU GI 050005005 6U
0,5000 (12,7 мм)	6,005 (152,527 мм)	0,023 (0,5842 мм)	RU GI 050006005 6U
0,5625 (14,2875 мм)	3,505 (89,027 мм)	0,023 (0,5842 мм)	RU GI 056253505 6U
0,6250 (15,875 мм)	3,005 (76,327 мм)	0,023 (0,5842 мм)	RU GI 062503005 6U
0,6250 (15,875 мм)	3,505 (89,027 мм)	0,023 (0,5842 мм)	RU GI 062503505 6U
0,6250 (15,875 мм)	4,005 (101,727 мм)	0,023 (0,5842 мм)	RU GI 062504005 6U
0,6250 (15,875 мм)	5,005 (127,127 мм)	0,023 (0,5842 мм)	RU GI 062505005 6U
0,6250 (15,875 мм)	6,005 (152,527 мм)	0,023 (0,5842 мм)	RU GI 062506005 6U
0,7500 (19,05 мм)	3,005 (76,327 мм)	0,023 (0,5842 мм)	RU GI 075003005 6U
0,7500 (19,05 мм)	4,005 (101,727 мм)	0,023 (0,5842 мм)	RU GI 075004005 6U
0,7500 (19,05 мм)	5,005 (127,127 мм)	0,023 (0,5842 мм)	RU GI 075005005 6U
0,7500 (19,05 мм)	6,005 (152,527 мм)	0,023 (0,5842 мм)	RU GI 075006005 6U
0,8750 (22,225 мм)	4,005 (101,727 мм)	0,023 (0,5842 мм)	RU GI 087504005 6U
1,0000 (25,4 мм)	3,005 (76,327 мм)	0,031 (0,7874 мм)	RU GI 100003005 6U
1,0000 (25,4 мм)	4,005 (101,727 мм)	0,031 (0,7874 мм)	RU GI 100004005 6U
1,0000 (25,4 мм)	5,005 (127,127 мм)	0,031 (0,7874 мм)	RU GI 100005005 6U
1,0000 (25,4 мм)	6,005 (152,527 мм)	0,031 (0,7874 мм)	RU GI 100006005 6U
1,0000 (25,4 мм)	7,005 (177,927 мм)	0,031 (0,7874 мм)	RU GI 100007005 6U
, ,	, , , ,	,	

ЗАГОТОВКИ ДЛЯ КОНЦЕВЫХ ФРЕЗ С ФАСКОЙ, ШЛИФОВАННЫЕ, ДОПУСК ISO h6, ДЛИНЫ ПО СТАНДАРТУ DIN 6527 И 6528

 ДИАМЕТР:
 ДОПУСК:

 Все
 h6 по ISO

 ДЛИНА:
 ДОПУСК:

 Все
 -0 / +1 %

Все размеры в мм, если не указано иное.

ЧИСТОТА ОБРАБОТКИ ПОВЕРХНОСТИ:

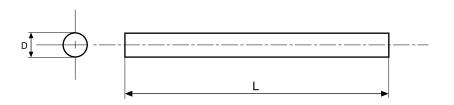
< 10 мм 0,05 Ra ≥ 10 мм 0,10 Ra

> Стандартный материал — сплав H10F. Другие сплавы предоставляются по запросу.

ПРИМЕР ЗАКАЗА ПРОДУКЦИИ

Для заказа заготовки 6 мм (D) \times 58 мм (L) из сплава H10F

RU DM 0600 0580 6LH10F


Для заказа заготовки 6 мм (D) \times 58 мм (L) из сплава H12F RU DM 0600 0580 6LH12F

РАЗМЕРЫ			КОД HYPERION
D (мм)	L (мм)	Размер фаски (мм)	
3,00	39	0,30	RU DM 0300 0390 6L
4,00	51	0,40	RU DM 0400 0510 6L
5,00	51	0,40	RU DM 0500 0510 6L
6,00	50	0,40	RU DM 0600 0500 6L
6,00	51	0,40	RU DM 0600 0510 6L
6,00	55	0,40	RU DM 0600 0550 6L
6,00	58	0,40	RU DM 0600 0580 6L
7,00	61	0,60	RU DM 0700 0610 6L
8,00	59	0,60	RU DM 0800 0590 6L
8,00	64	0,60	RU DM 0800 0640 6L
8,00	80	0,60	RU DM 0800 0800 6L
10,00	67	0,60	RU DM 1000 0670 6L
10,00	70	0,60	RU DM 1000 0700 6L
10,00	73	0,60	RU DM 1000 0730 6L
10,00	89	0,60	RU DM 1000 0890 6L
11,00	84	0,80	RU DM 1100 0840 6L
12,00	74	0,80	RU DM 1200 0740 6L
12,00	80	0,80	RU DM 1200 0800 6L
12,00	84	0,80	RU DM 1200 0840 6L
12,00	94	0,80	RU DM 1200 0940 6L
12,00	100	0,80	RU DM 1200 1000 6L
12,00	150	0,80	RU DM 1200 1500 6L
14,00	76	0,80	RU DM 1400 0760 6L
14,00	84	0,80	RU DM 1400 0840 6L
14,00	89	0,80	RU DM 1400 0890 6L
16,00	83	0,80	RU DM 1600 0830 6L
16,00	90	0,80	RU DM 1600 0900 6L
16,00	93	0,80	RU DM 1600 0930 6L
16,00	100	0,80	RU DM 1600 1000 6L
16,00	109	0,80	RU DM 1600 1090 6L
16,00	115	0,80	RU DM 1600 1150 6L
16,00	125	0,80	RU DM 1600 1250 6L
16,00	150	0,80	RU DM 1600 1500 6L
18,00	85	1,00	RU DM 1800 0850 6L
18,00	93	1,00	RU DM 1800 0930 6L
20,00	93	1,00	RU DM 2000 0930 6L
20,00	105	1,00	RU DM 2000 1050 6L
20,00	125	1,00	RU DM 2000 1250 6L
20,00	127	1,00	RU DM 2000 1270 6L
20,00	150	1,00	RU DM 2000 1500 6L
25,00	189,2	1,00	RU DM 2500 1892 6L

ЗАГОТОВКИ ДЛЯ КОНЦЕВЫХ ФРЕЗ, ШЛИФОВАННЫЕ, ДОПУСК ISO h6, ДЛИНОЙ 100 мм

RD GM

РАЗМЕРЫ		КОД HYPERION
D (мм)	L (мм)	
3,00	100	RD GM 0300 1000 6L
4,00	100	RD GM 0400 1000 6L
5,00	100	RD GM 0500 1000 6L
6,00	100	RD GM 0600 1000 6L
7,00	100	RD GM 0700 1000 6L
8,00	100	RD GM 0800 1000 6L
9,00	100	RD GM 0900 1000 6L
10,00	100	RD GM 1000 1000 6L
12,00	100	RD GM 1200 1000 6L
13,00	100	RD GM 1300 1000 6L
14,00	100	RD GM 1400 1000 6L
16,00	100	RD GM 1600 1000 6L
18,00	100	RD GM 1800 1000 6L
20,00	100	RD GM 2000 1000 6L

 ДИАМЕТР:
 ДОПУСК:

 все
 h6 по ISO

 ДЛИНА:
 ДОПУСК:

 все
 -0 / +1 %

Все размеры в мм, если не указано иное.

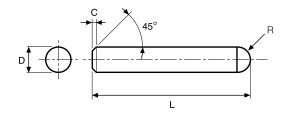
ЧИСТОТА ОБРАБОТКИ ПОВЕРХНОСТИ:

< 10 мм 0,05 Ra ≥ 10 мм 0,10 Ra

> Стандартный материал — сплав H10F. Другие сплавы предоставляются по запросу.

ПРИМЕР ЗАКАЗА ПРОДУКЦИИ

Для заказа заготовки 8 мм (D) \times 100 мм (L) из сплава H10F


RD GM 0800 1000 6LH10F

Для заказа заготовки 8 мм (D) \times 100 мм (L) из сплава H12F RD GM 0800 1000 6LH12F

ЗАГОТОВКИ ДЛЯ ФРЕЗ СО СФЕРИЧЕСКИМ КОНЦОМ С ФАСКОЙ, ШЛИФОВАННЫЕ, ДОПУСК ISO h6, ДЛИНЫ ФИКСИРОВАННЫЕ (в дюймах)

RY GI

PA3N	КОД HYPERION	
D (дюймы)	L (дюймы)	
0,2500 (6,35 мм)	2,005 (50,927 мм)	RY GI 025002005 6S
0,2500 (6,35 мм)	2,505 (63,627 мм)	RY GI 025002505 6T
0,3125 (7,9375 мм)	2,005 (50,927 мм)	RY GI 031252005 6S
0,3125 (7,9375 мм)	2,505 (63,627 мм)	RY GI 031252505 6T
0,3750 (9,525 мм)	2,505 (63,627 мм)	RY GI 037502505 6T
0,3750 (9,525 мм)	3,005 (76,327 мм)	RY GI 037503005 6U
0,3750 (9,525 мм)	4,005 (101,727 мм)	RY GI 037504005 6U
0,4375 (11,1125 мм)	2,755 (69,977 мм)	RY GI 043752755 6U
0,5000 (12,7 мм)	3,005 (76,327 мм)	RY GI 050003005 6U
0,5000 (12,7 мм)	4,005 (101,727 мм)	RY GI 050004005 6U
0,6250 (15,875 мм)	3,505 (89,027 мм)	RY GI 062503505 6U
0,7500 (19,05 мм)	4,005 (101,727 мм)	RY GI 075004005 6U
1,0000 (25,4 мм)	4,005 (101,727 мм)	RY GI 100004005 6U

ДИАМЕТР: ДОПУСК: все h6 по ISO

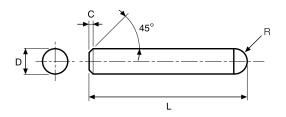
ДЛИНА (дюймы): ДОПУСК (дюймы): \leq 2,005 (50,927 мм) -0 / +0,031 (0,7874 мм) 0 × ≥ 2,255 (57,277 мм) до ≤ 2,755 (69,977 мм) -0 / +0,050 (1,27 мм) -0 / +0,060 (1,524 мм)

ЧИСТОТА ОБРАБОТКИ ПОВЕРХНОСТИ:

< 0,4375 дюйма (11,1125 мм) 0,05 Ra ≥ 0,4375 дюйма (11,1125 мм) 0,10 Ra

> Стандартный материал — сплав H10F. Другие сплавы предоставляются по запросу.

ПРИМЕР ЗАКАЗА ПРОДУКЦИИ


Для заказа заготовки 1/2 дюйма (12,7 мм) (D) \times 4 дюйма (101,6 мм) (L) из сплава H10F RU GI 050004005 6UH10F

Для заказа заготовки 1/2 дюйма (12,7 мм) (D) \times 4 дюйма (101,6 мм) (L) из сплава DM80 RU GI 0500 04005 6UDM80

ЗАГОТОВКИ ДЛЯ ФРЕЗ СО СФЕРИЧЕСКИМ КОНЦОМ С ФАСКОЙ, ШЛИФОВАННЫЕ, ДОПУСК ISO h6, ДЛИНЫ ФИКСИРОВАННЫЕ

RY DM

РАЗМЕРЫ		КОД HYPERION
D (мм)	L (мм)	
6,00	58	RY DM 0600 0580 6L
8,00	64	RY DM 0800 0640 6L
10,00	73	RY DM 1000 0730 6L
12,00	84	RY DM 1200 0840 6L
14,00	84	RY DM 1400 0840 6L
16,00	93	RY DM 1600 0930 6L
18,00	93	RY DM 1800 0930 6L
20,00	105	RY DM 2000 1050 6L

ДИАМЕТР: ДОПУСК: h6 по ISO

ДЛИНА: ДОПУСК: все -0 / +1 %

Все размеры в мм, если не указано иное.

ЧИСТОТА ОБРАБОТКИ ПОВЕРХНОСТИ:

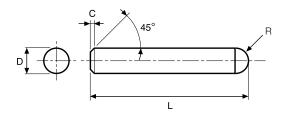
< 10 мм 0,05 Ra ≥ 10 мм 0,10 Ra

> Стандартный материал — сплав H10F. Другие сплавы предоставляются по запросу.

ПРИМЕР ЗАКАЗА ПРОДУКЦИИ

Для заказа заготовки 6 мм (D) × 58 мм (L) из сплава H10F

RY DM 0600 0580 6LH10F


Для заказа заготовки 6 мм (D) × 58 мм (L) из сплава DM80

RY DM 0600 0580 6LDM80

ЗАГОТОВКИ ДЛЯ ФРЕЗ СО СФЕРИЧЕСКИМ КОНЦОМ С ФАСКОЙ, ШЛИФОВАННЫЕ, ДОПУСК ISO h6, ДЛИНОЙ 100 мм

RY GM

PA3N	ИЕРЫ	КОД HYPERION
D (мм)	L (мм)	
6,00	100	RY GM 0600 1000 6L
8,00	100	RY GM 0800 1000 6L
10,00	100	RY GM 1000 1000 6L
12,00	100	RY GM 1200 1000 6L
14,00	100	RY GM 1400 1000 6L
16,00	100	RY GM 1600 1000 6L
25,00	100	RY GM 2500 1000 6L

ДИАМЕТР: ДОПУСК: h6 по ISO

ДЛИНА: ДОПУСК: все -0 / +1 %

Все размеры в мм, если не указано иное.

ЧИСТОТА ОБРАБОТКИ ПОВЕРХНОСТИ:

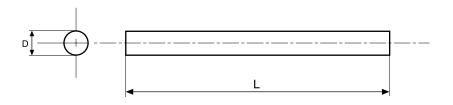
< 10 мм 0,05 Ra ≥ 10 мм 0,10 Ra

Стандартный материал — сплав H10F. Другие сплавы предоставляются по запросу.

ПРИМЕР ЗАКАЗА ПРОДУКЦИИ

Для заказа заготовки 6 мм (D) × 58 мм (L) из сплава H10F

RY DM 0600 0580 6LH10F


Для заказа заготовки 6 мм (D) \times 58 мм (L) из сплава DM80

RY DM 0600 0580 6LDM80

ЗАГОТОВКИ ДЛЯ КОНЦЕВЫХ ФРЕЗ, НЕШЛИФОВАННЫЕ, ДЛИНЫ ПО СТАНДАРТУ DIN 6527 И 6528

RD DM

РАЗМЕРЫ		КОД HYPERION
D (мм)	L (мм)	
3,10	39	RD DM 0310 0390 HL
4,10	51	RD DM 0410 0510 HL
5,10	51	RD DM 0510 0510 HL
6,10	51	RD DM 0610 0510 HL
6,10	55	RD DM 0610 0550 HL
6,10	58	RD DM 0610 0580 HL
8,10	64	RD DM 0810 0640 HL
9,10	68	RD DM 0910 0680 HL
10,10	67	RD DM 1010 0670 HL
10,10	73	RD DM 1010 0730 HL
12,10	74	RD DM 1210 0740 HL
12,10	84	RD DM 1210 0840 HL
14,10	84	RD DM 1410 0840 HL
16,10	93	RD DM 1610 0930 HL
18,10	93	RD DM 1810 0930 HL
20.10	105	RD DM 2010 1050 HL

ДИАМЕТР: ДОПУСК (мм):

все -0 / +0,1

ДЛИНА: ДОПУСК: все -0 / +1 %

Все размеры в мм, если не указано иное.

Стандартный материал — сплав H10F. Другие сплавы предоставляются по запросу.

ПРИМЕР ЗАКАЗА ПРОДУКЦИИ

RD DM 0610 0580 6LH12F

Для заказа заготовки 6,1 мм (D) \times 58 мм (L) из сплава H10F RD DM 0610 0580 6LH10F

Для заказа заготовки 6,1 мм (D) × 58 мм (L) из сплава H12F

ЗАГОТОВКИ ДЛЯ СВЕРЛ, НЕШЛИФОВАННЫЕ, ДЛИНЫ ПО СТАНДАРТУ DIN 6539

RD DD

PA3N	ИЕРЫ	КОД HYPERION
D (мм)	L (мм)	
3,10	46	RD DD 0310 0460 HL
3,10	61	RD DD 0310 0610 HL
3,40	49	RD DD 0340 0490 HL
3,40	65	RD DD 0340 0650 HL
3,80	52	RD DD 0380 0520 HL
4,10	55	RD DD 0410 0550 HL
4,10	75	RD DD 0410 0750 HL
4,30	55	RD DD 0430 0550 HL
4,60	58	RD DD 0460 0580 HL
4,60	80	RD DD 0460 0800 HL
4,80	58	RD DD 0480 0580 HL
4,80	80	RD DD 0480 0800 HL
5,10	62	RD DD 0510 0620 HL
5,40	62	RD DD 0540 0620 HL
5,70	66	RD DD 0570 0660 HL
6,10	66	RD DD 0610 0660 HL
6,40	70	RD DD 0640 0700 HL
6,40	101	RD DD 0640 1010 HL
6,60	70	RD DD 0660 0700 HL
6,60	101	RD DD 0660 1010 HL
6,80	70	RD DD 0680 0700 HL
7,10	74	RD DD 0710 0740 HL
7,60	74	RD DD 0760 0740 HL
8,10	79	RD DD 0810 0790 HL
8,60	79	RD DD 0860 0790 HL
9,10	84	RD DD 0910 0840 HL
9,60	84	RD DD 0960 0840 HL
10,10	89	RD DD 1010 0890 HL
10,30	89	RD DD 1030 0890 HL
11,10	95	RD DD 1110 0950 HL
11,60	95	RD DD 1160 0950 HL
11,90	95	RD DD 1190 0950 HL
12,30	102	RD DD 1230 1020 HL
12,70	102	RD DD 1270 1020 HL
13,30	102	RD DD 1330 1020 HL
13,60	107	RD DD 1360 1070 HL
14,10	107	RD DD 1410 1070 HL
14,60	111	RD DD 1460 1110 HL
15,10	111	RD DD 1510 1110 HL
15,60	115	RD DD 1560 1150 HL
16,10	115	RD DD 1610 1150 HL

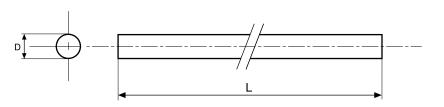
ДИАМЕТР: ДОПУСК (мм): все -0 / +0,1

ДЛИНА: ДОПУСК: все -0/+1%

Все размеры в мм, если не указано иное.

Стандартный материал — сплав H10F. Другие сплавы предоставляются по запросу.

ПРИМЕР ЗАКАЗА ПРОДУКЦИИ


Для заказа заготовки 6,1 мм (D) \times 66 мм (L) из сплава H10F RD DD 0610 0660 6LH10F

Для заказа заготовки 6,1 мм (D) × 66 мм (L) из сплава H12F RD DD 0610 0660 6LH12F

СТЕРЖНИ ДЛИНОЙ 320 мм, ШЛИФОВАННЫЕ, ДОПУСК ISO h6

RD SR

PA3N	ИЕРЫ	КОД HYPERION
D (мм)	L (мм)	
3,00	320	RD SR 0300 3200 6W
4,00	320	RD SR 0400 3200 6W
5,00	320	RD SR 0500 3200 6W
6,00	320	RD SR 0600 3200 6W
6,50	320	RD SR 0650 3200 6W
7,00	320	RD SR 0700 3200 6W
7,50	320	RD SR 0750 3200 6W
8,00	320	RD SR 0800 3200 6W
9,00	320	RD SR 0900 3200 6W
10,00	320	RD SR 1000 3200 6W
11,00	320	RD SR 1100 3200 6W
12,00	320	RD SR 1200 3200 6W
13,00	320	RD SR 1300 3200 6W
14,00	320	RD SR 1400 3200 6W
15,00	320	RD SR 1500 3200 6W
16,00	320	RD SR 1600 3200 6W
18,00	320	RD SR 1800 3200 6W
20,00	320	RD SR 2000 3200 6W
21,00	320	RD SR 2100 3200 6W
22,00	320	RD SR 2200 3200 6W
23,00	320	RD SR 2300 3200 6W
24,00	320	RD SR 2400 3200 6W
25,00	320	RD SR 2500 3200 6W
26,00	320	RD SR 2600 3200 6W
27,00	320	RD SR 2700 3200 6W
29,00	320	RD SR 2900 3200 6W
30,00	320	RD SR 3000 3200 6W
32,00	320	RD SR 3200 3200 6W

ДИАМЕТР: ДОПУСК: все h6 по ISO

ДЛИНА: ДОПУСК (мм): все -0 / +6

Все размеры в мм, если не указано иное.

ЧИСТОТА ОБРАБОТКИ ПОВЕРХНОСТИ:

< 10 мм 0,05 Ra

≥ 10 мм 0,10 Ra

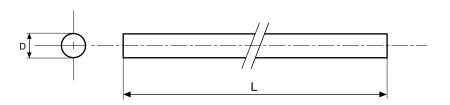
ДОПУСК БИЕНИЯ

Диаметр заготовки (мм)	Максимальное биение (мм)
От 3 до 5	0,07
От 6 до 10	0,05
> 10	0,03

Стандартный материал — сплав H10F. Другие сплавы предоставляются по запросу.

ПРИМЕР ЗАКАЗА ПРОДУКЦИИ

Для заказа заготовки 3 мм (D) \times 320 мм (L) из сплава H10F


RD SR 0300 3200 6WH10F

Для заказа заготовки 3 мм (D) \times 320 мм (L) из сплава DM80 RD SR 0300 3200 6WDM80

ЗАГОТОВКИ ЦЕЛЬНЫЕ ТВЕРДОСПЛАВНЫЕ СТЕРЖНИ ДЛИНОЙ 320 мм, НЕШЛИФОВАННЫЕ

RD SR

PA3N	ИЕРЫ	КОД HYPERION
D (мм)	L (мм)	
1,10	320	RD SR 0110 3200 EW
1,30	320	RD SR 0130 3200 EW
1,70	320	RD SR 0170 3200 EW
2,20	320	RD SR 0220 3200 EW
2,50	320	RD SR 0250 3200 EW
2,70	320	RD SR 0270 3200 EW
3,20	320	RD SR 0320 3200 EW
3,40	320	RD SR 0340 3200 EW
3,70	320	RD SR 0370 3200 EW
4,20	320	RD SR 0420 3200 EW
4,70	320	RD SR 0470 3200 EW
5,20	320	RD SR 0520 3200 EW
5,70	320	RD SR 0570 3200 EW
6,20	320	RD SR 0620 3200 DW
6,55	320	RD SR 0655 3200 DW
6,70	320	RD SR 0670 3200 DW
7,20	320	RD SR 0720 3200 DW
7,70	320	RD SR 0770 3200 DW
8,20	320	RD SR 0820 3200 DW
8,80	320	RD SR 0880 3200 CW
9,05	320	RD SR 0905 3200 CW
9,30	320	RD SR 0930 3200 CW
9,80	320	RD SR 0980 3200 CW
10,30	320	RD SR 1030 3200 CW
10,80	320	RD SR 1080 3200 CW
11,30	320	RD SR 1130 3200 CW
11,50	320	RD SR 1150 3200 CW
11,80	320	RD SR 1180 3200 CW
12,30	320	RD SR 1230 3200 CW
12,80	320	RD SR 1280 3200 CW

Продолжение на следующей странице

ДИАМЕТР (мм): ДОПУСК (мм):

ДЛИНА: ДОПУСК (мм):

BCe -0/+6

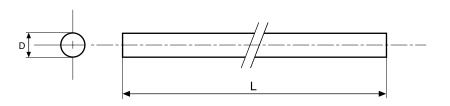
Все размеры в мм, если не указано иное.

Стандартный материал — сплав H10F. Другие сплавы предоставляются по запросу.

ПРИМЕР ЗАКАЗА ПРОДУКЦИИ

Для заказа заготовки 3,2 мм (D) × 320 мм (L) из сплава H10F

RD SR 0320 3200 EWH10F


Для заказа заготовки 3,2 мм (D) × 320 мм (L) из сплава DM80

RD SR 0320 3200 EWDM80

ЗАГОТОВКИ ЦЕЛЬНЫЕ ТВЕРДОСПЛАВНЫЕ СТЕРЖНИ ДЛИНОЙ 320 мм, НЕШЛИФОВАННЫЕ

RD SR

PA3N	ИЕРЫ	КОД HYPERION
D (мм)	L (мм)	
13,10	320	RD SR 1310 3200 CW
13,80	320	RD SR 1380 3200 CW
14,30	320	RD SR 1430 3200 CW
14,60	320	RD SR 1460 3200 CW
14,80	320	RD SR 1480 3200 CW
15,30	320	RD SR 1530 3200 CW
15,80	320	RD SR 1580 3200 CW
16,30	320	RD SR 1630 3200 CW
16,80	320	RD SR 1680 3200 CW
17,30	320	RD SR 1730 3200 CW
17,80	320	RD SR 1780 3200 CW
18,30	320	RD SR 1830 3200 CW
19,30	320	RD SR 1930 3200 CW
20,30	320	RD SR 2030 3200 CW
21,00	320	RD SR 2100 3200 CW
21,30	320	RD SR 2130 3200 CW
22,30	320	RD SR 2230 3200 CW
22,50	320	RD SR 2250 3200 CW
23,30	320	RD SR 2330 3200 CW
24,30	320	RD SR 2430 3200 CW
25,30	320	RD SR 2530 3200 CW
25,80	320	RD SR 2580 3200 CW
26,30	320	RD SR 2630 3200 CW
27,30	320	RD SR 2730 3200 CW
28,30	320	RD SR 2830 3200 CW
29,30	320	RD SR 2930 3200 CW
30,30	320	RD SR 3030 3200 CW
32,30	320	RD SR 3230 3200 CW
38,50	320	RD SR 3850 3200 CW

 ДИАМЕТР (мм):
 ДОПУСК (мм):

 от 1,1 до 5,8
 -0 / +0,15

 От 6,2 до 8,2
 -0 / +0,20

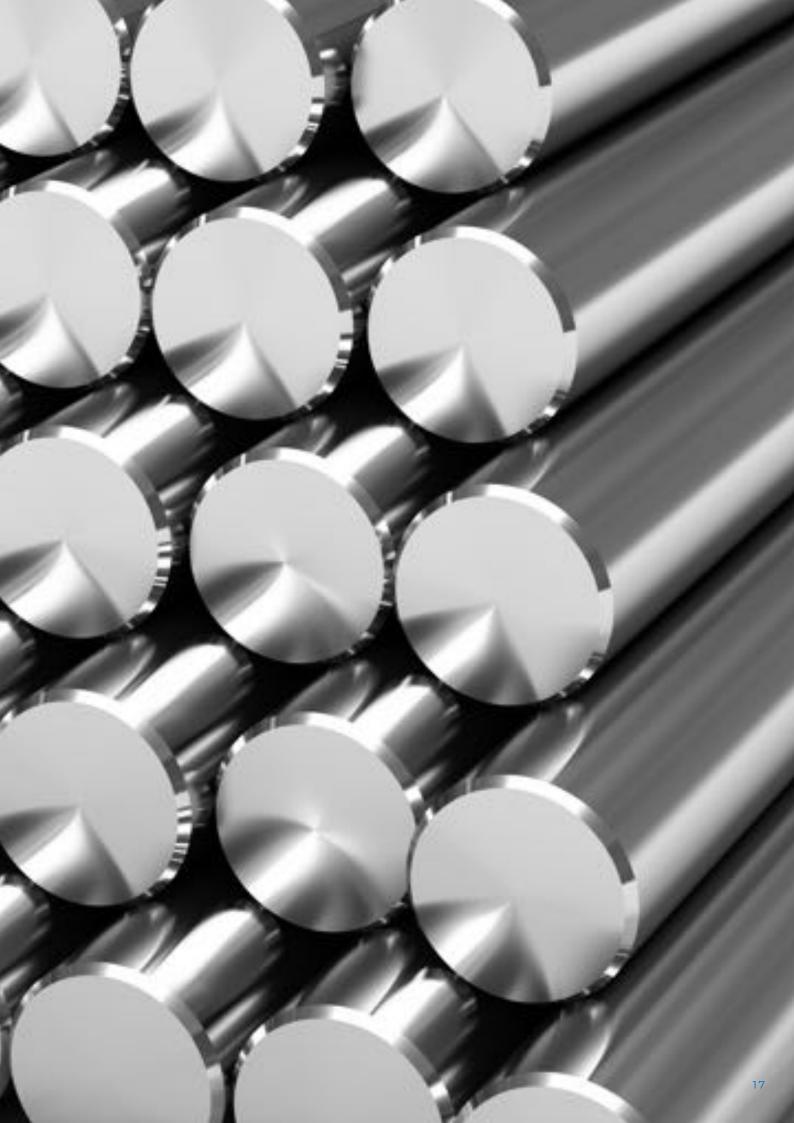
 От 8,8 до 38,5
 -0 / +0,40

 ДЛИНА:
 ДОПУСК (мм):

BCe -0/+6

Все размеры в мм, если не указано иное.

Стандартный материал — сплав H10F. Другие сплавы предоставляются по запросу.

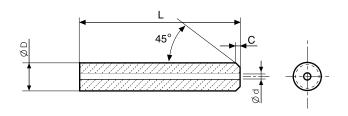

ПРИМЕР ЗАКАЗА ПРОДУКЦИИ

Для заказа заготовки 3,2 мм (D) × 320 мм (L) из сплава H10F

RD SR 0320 3200 EWH10F

Для заказа заготовки 3,2 мм (D) × 320 мм (L) из сплава DM80

RD SR 0320 3200 EWDM80



ЗАГОТОВКИ С КАНАЛАМИ ДЛЯ ПОДВОДА СОЖ

ЗАГОТОВКИ С ФАСКОЙ И ОДНИМ КАНАЛОМ ДЛЯ ПОДВОДА СОЖ, ШЛИФОВАННЫЕ, ДОПУСК ISO H6, ДЛИНЫ ФИКСИРОВАННЫЕ

RM U1

		КОД HYPERION			
D (мм)	L (мм)	Размер фаски (мм)	Диаметр канала для подвода СОЖ (мм)	Допуск для канала СОЖ (+/- мм)	
6,00	55,2	0,40	1,00	0,15	RMU1M-0600-0552S6L
6,00	58,2	0,40	1,00	0,15	RMU1M-0600-0582S6L
8,00	59,2	0,60	1,30	0,15	RMU1M-0800-0592S6L
8,00	64,2	0,60	1,30	0,15	RMU1M-0800-0642S6L
10,00	67,2	0,60	1,50	0,20	RMU1M-1000-0672S6L
10,00	73,2	0,60	1,50	0,20	RMU1M-1000-0732S6L
12,00	74	0,80	2,00	0,25	RMU1M-1200-0740S6L
12,00	84	0,80	2,00	0,25	RMU1M-1200-0840S6L
14,00	76	0,80	2,00	0,25	RMU1M-1400-0760S6L
14,00	84	0,80	2,00	0,25	RMU1M-1400-0840S6L
16,00	83	0,80	2,50	0,25	RMU1M-1600-0830S6L
16,00	93	0,80	2,50	0,25	RMU1M-1600-0930S6L
18,00	85	1,00	3,00	0,25	RMU1M-1800-0850S6L
18,00	93	1,00	3,00	0,25	RMU1M-1800-0930S6L
20,00	93	1,00	3,00	0,25	RMU1M-2000-0930S6L
20,00	105	1,00	3,00	0,25	RMU1M-2000-1050S6L
25.00	122,2	1,00	3.00	0,25	RMU1M-2500-1222S6L

 ДИАМЕТР:
 ДОПУСК:

 все
 h6 по ISO

 ДЛИНА:
 ДОПУСК:

 все
 -0 / +1 %

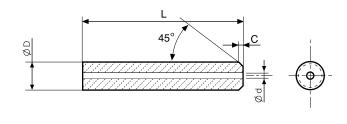
Все размеры в мм, если не указано иное.

Стандартный материал — сплав H10F. Другие сплавы предоставляются по запросу.

ПРИМЕР ЗАКАЗА ПРОДУКЦИИ

Для заказа заготовки 10 мм (D) × 73 мм (L) из сплава H10F

RMU1M-1000-0732S--6LH10F


Для заказа заготовки 10 мм (D) × 73 мм (L) из сплава H12F

RMU1M-1000-0732S--6LH12F

ЗАГОТОВКИ С КАНАЛАМИ ДЛЯ ПОДВОДА СОЖ

ЗАГОТОВКИ С ФАСКОЙ И ОДНИМ КАНАЛОМ ДЛЯ ПОДВОДА СОЖ, ШЛИФОВАННЫЕ, ДОПУСК ISO H6, ДЛИНЫ ФИКСИРОВАННЫЕ (дюймовые)

RD U1

	РАЗМЕРЫ						
D (дюймы)	L (дюймы)	Размер фаски (дюймы)	Диаметр канала для подвода СОЖ (дюймы)	Допуск для канала СОЖ (+/- мм)			
0,375 (9,525 мм)	2,500 (63,5 мм)	0,011 (0,2794 мм)	0,060 (1,524 мм)	0,008 (0,2032 мм)	RDU1 03750 02505 6L		
0,500 (12,7 мм)	3,000 (76,2 мм)	0,023 (0,5842 мм)	0,079 (2,0066 мм)	0,010 (0,254 мм)	RDU1 05000 03005 6L		
0,500 (12,7 мм)	4,000 (101,6 мм)	0,023 (0,5842 мм)	0,079 (2,0066 мм)	0,010 (0,254 мм)	RDU1 05000 04005 6L		
0,500 (12,7 мм)	6,000 (152,4 мм)	0,023 (0,5842 мм)	0,079 (2,0066 мм)	0,010 (0,254 мм)	RDU1 05000 06005 6L		
0,750 (19,05 мм)	4,000 (101,6 мм)	0,023 (0,5842 мм)	0,118 (2,9972 мм)	0,010 (0,254 мм)	RDU1 07500 04005 6L		
0,750 (19,05 мм)	5,000 (127 мм)	0,023 (0,5842 мм)	0,118 (2,9972 мм)	0,010 (0,254 мм)	RDU1 07500 05005 6L		
0,750 (19,05 мм)	6,000 (152,4 мм)	0,023 (0,5842 мм)	0,118 (2,9972 мм)	0,010 (0,254 мм)	RDU1 07500 06005 6L		
1,000 (25,4 мм)	4,000 (101,6 мм)	0,031 (0,7874 мм)	0,118 (2,9972 мм)	0,010 (0,254 мм)	RDU1 10000 04005 6L		
1,000 (25,4 мм)	5,000 (127 мм)	0,031 (0,7874 мм)	0,118 (2,9972 мм)	0,010 (0,254 мм)	RDU1 10000 05005 6L		
1,000 (25,4 мм)	6,000 (152,4 мм)	0,031 (0,7874 мм)	0,118 (2,9972 мм)	0,010 (0,254 мм)	RDU1 10000 06005 6L		

ДИАМЕТР: ДОПУСК: все h6 по ISO

ДЛИНА (ДЮЙМЫ): ДОПУСК (ДЮЙМЫ) \leq 2,000 (50,8 мм) -0 / +0,031 (0,7874 мм) OT \geq 2,250 (57,15 мм) до \leq 2,750 (69,85 мм) -0 / +0,050 (1,27 мм) \geq 3,000 (76,2 мм) -0 / +0,060 (1,524 мм)

ЧИСТОТА ОБРАБОТКИ ПОВЕРХНОСТИ:

<0,4375 дюйма (11,1125 мм) 0,05 Ra ≥0,4375 дюйма (11,1125 мм) 0,10 Ra

> Стандартный материал — сплав H10F. Другие сплавы предоставляются по запросу.

ПРИМЕР ЗАКАЗА ПРОДУКЦИИ

Для заказа заготовки 1/2 дюйма (12,7 мм) (D) \times 4 дюйма (101,6 мм) (L) из сплава H10F RDU1 05000 04005 6L H10F

КЛАССИФИКАЦИЯ MATEPИAЛOB ПО ISO

КЛАССИФИКАЦИЯ MATEPИAЛOB ПО ISO

ISO	№ CMC		УДЕЛЬНАЯ СИЛА РЕЗАНИЯ КС 0,4	ТВЕРДОСТЬ ПО БРИНЕЛЛЮ НВ	
				H/MM²	НВ
	01.1	НЕЛЕГИРОВАННАЯ СТАЛЬ	C = 0,1–0,25 %	2000	125
	01.2		C = 0,25–0,55 %	2100	150
	01.3		C = 0,55–0,80 %	2200	170
	02.1 НИЗКОЛЕГИРОВАННАЯ СТАЛЬ (легирующие элементы ≤ 5 %)		Незакаленная	2150	180
		Шарикоподшипниковая сталь	2300	210	
Р	02.2		Закаленная отпущенная	2550	275
СТАЛЬ	02.2		Закаленная отпущенная	2850	350
	03.11	ВЫСОКОЛЕГИРОВАННАЯ	Закаленная	2500	200
	03.21	СТАЛЬ (легирующие элементы > 5 %)	Закаленная инструментальная сталь	3900	325
	06,1	ЛИТАЯ СТАЛЬ	Нелегированная	2000	180
	06.2		Низколегированная (легирующие элементы ≤ 5 %)	2100	200
	06.3		Высоколегированная (легирующие элементы > 5 %)	2650	225

ISO	№ CMC		МАТЕРИАЛ		УДЕЛЬНАЯ СИЛА РЕЗАНИЯ КС 0,4	ТВЕРДОСТЬ ПО БРИНЕЛЛЮ НВ
					H/MM²	НВ
	05.11	НЕРЖАВЕЮЩАЯ СТАЛЬ	Незакаленная		2300	200
	05.12	— прутки/кованая	Дисперсионно-твердеющая		3550	330
	05.13	Ферритная/мартенситная	Закаленная		2850	330
	05.21	НЕРЖАВЕЮЩАЯ СТАЛЬ	Аустенитная		2300	180
	05.22	— прутки/кованая	Дисперсионно-твердеющая		3550	330
	05.23	Аустенитная	Супераустенитная		2950	200
	05.51	НЕРЖАВЕЮЩАЯ СТАЛЬ	Несвариваемая	≥ 0,05 % C	2550	230
M	05.52	— прутки/кованая	Свариваемая	< 0,05 % C	3050	260
НЕРЖАВЕЮЩАЯ		Аустенитно-ферритная				
СТАЛЬ		(дуплексная)				
	15.11	Нержавеющая сталь — литая	Незакаленная		2100	200
	15.12	Ферритная/мартенситная	Дисперсионно-твердеющая	Дисперсионно-твердеющая		330
	15.13		Закаленная		2650	330
	15.21	Нержавеющая сталь — литая	Аустенитная		2200	180
	15.22	Аустенитная	Дисперсионно-твердеющая		3150	330
	15.23		Супераустенитная		2700	200
	15.51	Нержавеющая сталь — литая	Несвариваемая	≥ 0,05 % C	2250	230
	15.52	Аустенитно-ферритная	Свариваемая	< 0,05 % C	2750	260
		(дуплексная)				

КЛАССИФИКАЦИЯ MATEPИAЛOB ПО ISO

ISO	№ CMC		УДЕЛЬНАЯ СИЛА РЕЗАНИЯ КС 0,4	ТВЕРДОСТЬ ПО БРИНЕЛЛЮ НВ	
				H/MM²	НВ
	07.1	КОВКИЙ	Ферритный (короткая стружка)	940	130
	07.2	ЧУГУН	Перлитный (длинная стружка)	1100	230
K	08.1	СЕРЫЙ ЧУГУН	С низкой прочностью на разрыв	1100	180
Ч УГУН	08.2		С высокой прочностью на разрыв	1150	220
	09.1	ВЫСОКОПРОЧНЫЙ ЧУГУН С ШАРОВИДНЫМ ГРАФИТОМ	Ферритный	1050	160
	09.2		Перлитный	1750	250
	09.3		Мартенситный	2700	380

ISO	№ CMC		МАТЕРИАЛ		
				H/MM²	НВ
30.11	30.11	АЛЮМИНИЕВЫЕ СПЛАВЫ	Пластичные и холодной обработки	500	60
	30.12		Нестареющие	800	100
			Пластичные или пластичные и состаренные		
30.21 30.22 30.41 30.42 33.1 33.2 33.3	АЛЮМИНИЕВЫЕ СПЛАВЫ	Литые, нестареющие	750	75	
		Литые или литые и состаренные	900	90	
	30.41	АЛЮМИНИЕВЫЕ СПЛАВЫ	Литые, 13–15 % Si	950	130
	30.42		Литые, 16–22 % Si	950	130
	33.1	МЕДЬ И	Легкообрабатываемые сплавы, ≥ 1 % Pb	700	110
	33.2	МЕДНЫЕ СПЛАВЫ	Латунь, свинцовые бронзы, ≤ 1 % Pb	700	90
	33.3		Бронза и бессвинцовая медь в т. ч.	1750	100
			электролитная медь		

ISO	№ CMC	МАТЕРИАЛ		УДЕЛЬНАЯ СИЛА РЕЗАНИЯ КС 0,4	ТВЕРДОСТЬ ПО БРИНЕЛЛЮ НВ
		ЖАРО	ОПРОЧНЫЕ СПЛАВЫ	H/MM²	НВ
	20.11	НА ЖЕЛЕЗОСОДЕРЖАЩЕЙ ОСНОВЕ	Отожженные или аустенизированные	3000	200
	20.12		Состаренные или аустенизированные и состаренные	3050	280
	20.21	НА НИКЕЛЕВОЙ ОСНОВЕ	Отожженные или аустенизированные	3300	250
	20.22		Состаренные или аустенизированные и состаренные	3600	350
S	20.24		Литые или литые и состаренные	3700	320
ЖАРОПРОЧНЫЙ	20.31	НА КОБАЛЬТОВОЙ ОСНОВЕ	Отожженные или аустенизированные	3300	200
МАТЕРИАЛ	20.32		Состаренные или аустенизированные и состаренные	3700	300
	20.33		Литые или литые и состаренные	3800	320
		TNT	АНОВЫЕ СПЛАВЫ ⁽¹⁾		Rm ⁽²⁾
	23.10	Технически чистые (99,5 % Ті)	Технически чистые (99,5 % Ті)		400
	23.21	α-сплавы, псевдо-α-сплавы и (α+β	3)-сплавы, отожженные	1700	950
	23.22	(α+β)- сплавы в состоянии старен	ия, β-сплавы, отожженные или состаренные	1700	1050

⁽¹⁾ Необходимо использовать угол в плане 45–60°, положительная заточка и СОЖ. (2) Rm = предел прочности на разрыв в МПа.

ISO	№ CMC	МАТЕРИАЛ		УДЕЛЬНАЯ СИЛА РЕЗАНИЯ КС 0,4	ТВЕРДОСТЬ ПО БРИНЕЛЛЮ НВ
ш				H/MM²	НВ
04.1	04.1	ТВЕРДАЯ СТАЛЬ	Закаленная отпущенная	3250	45 HRC
ЗАКАЛЕННЫЙ		Сверхтвердая сталь	Закаленная отпущенная	5550	60 HRC
МАТЕРИАЛ	10.1	ОТБЕЛЕННЫЙ ЧУГУН	Литые или литые и состаренные	2800	400

ХАРАКТЕРИСТИКИ ИЗНОСА ТВЕРДОСПЛАВНЫХ ИНСТРУМЕНТОВ

ISO P 85-450 HB

Все типы нелегированных, легированных и литых сталей, за исключением сталей с аустенитной структурой.

ХАРАКТЕРИСТИКИ ОБРАБАТЫВАЕМОСТИ

Легкое удаление стружки, что обеспечивает хорошие условия обработки

Образование наростов, тенденция к засаливанию материала и зона термического влияния увеличиваются у средне- и высоколегированных сплавов (> 10 %).

ПРОЦЕСС ИЗНОСА

Все материалы в этой группе имеют типичный износ по передней и задней поверхности инструмента.

В общем случае процессы термического, химического и механического износа сбалансированы в равной мере.

Режущая кромка инструмента для низко- и высоколегированных сталей должна обеспечивать стойкость к пластической деформации.

ISO M 120-450 HB

Нержавеющая аустенитная, аустенитно-ферритная и литая сталь (дуплексная).

ХАРАКТЕРИСТИКИ ОБРАБАТЫВАЕМОСТИ

Обрабатываемость ухудшается с увеличением содержания легирующих элементов, материал требует применения высокого усилия резания и имеет тенденцию к образованию наростов.

Наклеп материала может приводить к сильной адгезии и образованию наростов.

ПРОЦЕСС ИЗНОСА

Режущие кромки подвергаются значительному нагреву, вследствие чего характерными видами износа является образование заусенцев и наростов. Возможна пластическая деформация, сопровождаемая абразивным износом и износом по передней поверхности

ISO K 150-480 HB

Серый чугун, литейный чугун с шаровидным графитом, ковкий чугун, высокопрочный чугун, чугун с вермикулярным графитом и аустенитный ковкий чугун.

ХАРАКТЕРИСТИКИ ОБРАБАТЫВАЕМОСТИ

В отличие от стали, чугун образует при резании стружку надлома и требует низкого усилия резания.

Серый и ковкий чугун подвергаются обработке достаточно легко, в то время как высокопрочный чугун, чугун с вермикулярным графитом и аустенитный ковкий чугун обрабатываются сложнее.

ПРОЦЕСС ИЗНОСА

Термические и механические нагрузки, возникающие из-за стружки надлома, вызывают кратерный и абразивный износ.

Для высокопрочных чугунов характерно образование наростов, которое может приводить к проблемам с режущими кромками инструмента.

^{*} Обрабатываемость материалов варьируется в зависимости от легирующих элементов, термообработки и производственного процесса

^{*} Обрабатываемость материалов варьируется в зависимости от легирующих элементов, термообработки и производственного процесса

^{*} Обрабатываемость материалов варьируется в зависимости от легирующих элементов, термообработки и производственного процесса.

ХАРАКТЕРИСТИКИ ИЗНОСА ТВЕРДОСПЛАВНЫХ ИНСТРУМЕНТОВ

ISO N 15-430 HB

Алюминий и другие цветные металлы (медь, латунь, бронза).

ХАРАКТЕРИСТИКИ ОБРАБАТЫВАЕМОСТИ

Цветные металлы, такие как алюминий, медь, латунь и т. д., являются достаточно мягкими и после легирования допускают сравнительно простой контроль над удалением стружки. Абразивная обработка допускается при увеличении содержания Si.

Как правило, подразумевается, что острая режущая кромка при низком усилии резания и высокой скорости, будут обеспечивать более длительный срок службы инструмента.

ПРОЦЕСС ИЗНОСА

Механический износ доминирует над химическим.

Характерные виды износа — абразивный износ, разрушение и выкрашивание режущей кромки.

Алюминиевые материалы с повышенным содержанием кремния отличаются повышенным образованием наростов при механической обработке.

* Обрабатываемость материалов варьируется в зависимости от легирующих элементов, термообработки и производственного процесса

ISO **S** 85-745 HB

Жаропрочные сплавы (на железной, никелевой и кобальтовой основе), титан и титановые сплавы.

ХАРАКТЕРИСТИКИ ОБРАБАТЫВАЕМОСТИ

Вязкие материалы, склонные к образованию наростов, наклепу и выделению тепла.

Они схожи с материалами категории ISO M, но обрабатываются хуже и сокращают срок службы режущих кромок инструмента.

ПРОЦЕСС ИЗНОСА

Возможна пластическая деформация, сопровождаемая абразивным износом и износом по передней поверхности

Характерны интенсивные процессы механического и химического износа.

Высокие температуры приводят к засаливанию материала, а плохое стружкообразование вызывает серьезные проблемы.

ISO **H** 45-75 HRC

Закаленная сталь, закаленный чугун и отбеленный чугун.

ХАРАКТЕРИСТИКИ ОБРАБАТЫВАЕМОСТИ

Вследствие высокой твердости механическая обработка этих материалов затруднена из-за необходимости приложения высокого усилия резания.

Во время резания материалы выделяют значительное количество тепла и приводят к абразивному износу режущей кромки.

ПРОЦЕСС ИЗНОСА

Высокие термические и механические нагрузки приводят к разрушению и деформации.

^{*} Обрабатываемость материалов варьируется в зависимости от легирующих элементов, термообработки и производственного процесса

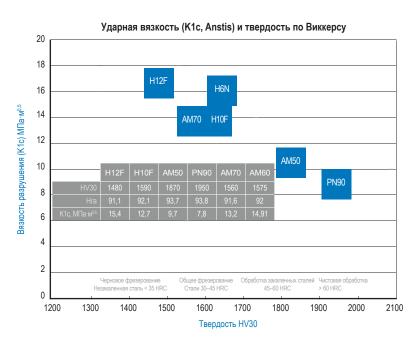
^{*} Обрабатываемость материалов варьируется в зависимости от легирующих элементов, термообработки и производственного процесса

СПЛАВЫ

МАТРИЦА ПРИМЕНЕНИЯ СПЛАВОВ

ОБЩИЕ РЕКОМЕНДАЦИИ ПО ВЫБОРУ СПЛАВОВ ДЛЯ РАСПРОСТРАНЕННЫХ ОБЛАСТЕЙ ПРИМЕНЕНИЯ

СВЕРЛЕНИЕ


КЛАССИФИКАЦИЯ МАТЕРИАЛА ПО ISO	Р		M		K		N		S		Н	
	ОБЩЕЕ НАЗНАЧЕНИЕ	ВЫСОКАЯ ПРОИЗВОДИ- ТЕЛЬНОСТЬ	ОБЩЕЕ НАЗНАЧЕНИЕ	ВЫСОКАЯ ПРОИЗВОДИ- ТЕЛЬНОСТЬ	ОБЩЕЕ НАЗНАЧЕНИЕ	ВЫСОКАЯ ПРОИЗВОДИ- ТЕЛЬНОСТЬ	ОБЩЕЕ НА- ЗНАЧЕНИЕ	ВЫСОКАЯ ПРОИЗВОДИ- ТЕЛЬНОСТЬ	ОБЩЕЕ НАЗНАЧЕНИЕ	ВЫСОКАЯ ПРОИЗВОДИ- ТЕЛЬНОСТЬ	ОБЩЕЕ НАЗНАЧЕНИЕ	ВЫСОКАЯ ПРОИЗВОДИ- ТЕЛЬНОСТЬ
H10F	*		*		*		*		*			
AM70		*		•						*		
PN90											*	
AM50								•			•	
AM60								A				
H6N								•				

ФРЕЗЕРОВАНИЕ

КЛАССИФИКАЦИЯ МАТЕРИАЛА ПО ISO	Р		M		K		N		S		Н	
	ЧЕРНОВАЯ ОБРАБОТКА	ЧИСТОВАЯ ОБРАБОТКА										
H10F	*	*	*	•	•		*		•	•		
AM70				*						*		
PN90												*
AM50									*		*	
AM60								A				
H12F	•		•									
H6N								•				

[★] Оптимальный вариант 🌘 Зависит от геометрии сверла 🛕 Требуется сплав с алмазным напылением

СВОЙСТВА СПЛАВОВ

